$$\frac{\operatorname{Proposition 2}}{\operatorname{Proposition 2}}:$$
A non-trivial chiral vertex operator
$$\frac{\operatorname{Proposition 2}}{\operatorname{Proposition}} \stackrel{\sim}{\to} C$$
exists if and only if the highest weights
 λ_0, λ and λ_{∞} satisfy the quantum
Clebsch-Gordan condition at level k.
Conformal invariance (Prop. 4 §5)
 $\xrightarrow{}$ restriction $\mathcal{P}_0: V_{\lambda_0} \otimes V_{\lambda} \xrightarrow{} V_{\lambda_{\infty}}$ is given
by $z^{\Delta_{\infty} - \Delta_{\lambda} - \Delta_{\lambda}} \overrightarrow{p}, (* *)$
where \overrightarrow{p} is a basis of
Homg($K_{\infty} V_{\lambda}, V_{\lambda_{\infty}}$)
 \mathcal{P} is uniquely determined by \mathcal{P}_0 .
Decompose $\Phi(v, z)$ into $\Phi(v, z) = \sum_{n \in \mathbb{Z}} \Phi_n(v, z)$,
such that Φ_n sends $H_{\lambda}(d)$ to $H_{\lambda}(d-n)$.
By using Prop. 1 and $(* *)$ together with
the definition of L_0 one can check the
relation $[L_0, \Phi_0(v, z)] = (z d_1 + \Delta_{\lambda}) \Phi_0(v, z)$
(exercise)

$$\rightarrow \phi(v_{12}), ve V_{A} \quad \text{can be written in the form} \phi(v_{12}) = \sum_{n \in \mathbb{Z}} \phi_{n}(v) z^{-n-\Delta} where \Delta = -\Delta_{Aw} + \Delta_{A, +} \Delta_{A}, \phi_{n}(v) : H_{A, }(d) \rightarrow H_{A}(dw) \frac{Proposition 3:}{Proposition 3:} The primary field $\phi(v_{12}), v \in V_{A}, \text{ satisfies} \text{ the relation} [L_{n}, \phi(v_{12})] = z^{n} (z d + (n+i) \Delta_{A}) \phi(v_{12}) \quad (i) for any integer n. (exercise) Interpretation: $\phi(v, z)(dz)^{\Delta_{A}} \text{ is invariant under local hole} conformal transformations, namely we have $\phi(v, f(z)) = (df)^{-\Delta_{A}} \phi(v_{12}) \rightarrow for f_{E}(z) = z - z(z) \text{ this gives:} \\ S_{E} \phi(v_{12}) = (\Delta_{A} z'(z) + z(z) dz) \phi(v_{12}) \quad (z) \\ \text{In particular, in the case } z(z) = z^{2n+1} \text{ the} \\ right-hand side of (z) coincides with (i). \end{cases}$$$$$

Jet - hand sides also coincide. Next, define

$$X(2)$$
 and $T(2)$ by
 $X(2) = \sum_{n \in \mathbb{Z}} (X \otimes t^n) z^{-n-1}$,
 $T(z) = \sum_{n \in \mathbb{Z}} L_n z^{-n-2}$
where $X \in og$ and both $X(2)$ and $T(2)$
are formal power series in z. For ueth,
 $T \in H_n^*$, $\langle T, X(2) u \rangle = \sum_{n \in \mathbb{Z}} \langle T, (X \otimes t^n) z^{n-1} u \rangle$
is expressed as a finite sum, similarly
for $T(2)$ ("energy-momentum tensor").
OPE:
 $X(\omega) \varphi(v, 2) = \sum_{k \in \mathbb{Z}} w^{-1} z^{-\Delta-k} \sum_{m \in \mathbb{Z}} (\frac{z}{w})^m (X \otimes t^n) \varphi_{km}(v)$
A ssume $|w| > |z| > 0$. Using gauge inv.,
the above expression can be written as
 $\sum_{k \in \mathbb{Z}} w^{-1} z^{-\Delta-k} \sum_{m \geq 0} (\frac{z}{w})^m \varphi_{kn}(v) + R, (w-2),$
where $R, (w-2)$ is regular in the sense
that $\langle T, R, (w-2) \rangle$ is hol. $\forall \beta \in H_{\Delta_n}, \gamma \in H_{X,\infty}^*$

$$\rightarrow X(\omega)\phi(\upsilon,z) \text{ in region } |\omega| > |z| > 0 \\ \text{is analytically continued to } \phi(\upsilon,z)X(\omega) \\ \text{defined in region } |z| > |\omega| > 0 \\ \text{``operator product expansion`} of X(\omega) \\ \text{and } \phi(\upsilon,z) \\ \text{Similarly, we have} \\ T(\omega)\phi(\upsilon,z) = \left(\frac{\Delta_n}{(\omega-z)^2} + \frac{1}{\omega-z}\frac{2}{2z}\right)\phi(\upsilon,z) \\ + R_2(\omega-z) \\ \text{in the region } |\omega| > |z| > 0, \text{ where } R_2(\omega-z) \\ \text{is regular in } \omega - z = \text{analytically} \\ \text{continued to } \phi(\upsilon,z)T(\omega) \text{ in region} \\ |z| > |\omega| > 0. \text{ In the region } |\omega| > |z| > 0 \\ \text{we have:} \\ T(\omega)T(z) = \frac{C_1}{(\omega-z)^4} + \frac{2T(z)}{(\omega-z)^2} + \frac{1}{\omega-z}\frac{2}{2z}T(z) \\ + R_3(\omega-z), \\ \text{where } R_3(\omega-z) \text{ is regular in } \omega - z. \\ \rightarrow \text{ analytically continued to region} \\ |z| > |\omega| > 0: T(z) \text{ T(}\omega) \end{aligned}$$

$$\frac{jemma \ l:}{\left[\chi \otimes t^{u}, \varphi(\sigma, z)\right]} = \frac{1}{2\pi i} \int_{C} \omega^{u} \chi(\omega) \varphi(\sigma, z) d\omega,$$

$$\left[L_{n}, \varphi(\sigma, z)\right] = \frac{1}{2\pi i} \int_{C} \omega^{u+1} T(\omega) \varphi(\sigma, z) d\omega,$$
where C is an oriented small circle
in the w-plane turning around z
counterclockwise.

$$\frac{Proof!}{We \ will \ show \ the second equality,}$$
the first one is analogous. Fix a
point in the w-plane with coordinatez.
Consider the following contours

$$\frac{\sqrt{2}}{\left(\frac{\sigma}{2}\right)}^{2} = \frac{\sqrt{2}}{\left(\frac{\sigma}{2}\right)^{2}}$$

and the corresponding residues:

$$T(\omega) = \sum_{n \in \mathbb{Z}} L_n \omega^{-n-2}$$

$$\rightarrow L_n \varphi(v, z) = \frac{1}{2\pi 1^{-1}} \int_{C_1} \omega^{n+1} T(\omega) \varphi(v, z) d\omega$$

$$\varphi(v, z) L_n = \frac{1}{2\pi 1^{-1}} \int_{C_2} \omega^{n+1} \varphi(v, z) T(\omega) d\omega$$

$$\Rightarrow \int_{C_1} \omega^{n+1} T(\omega) \varphi(v, z) d\omega - \int_{C_2} \omega^{n+1} \varphi(v, z) T(\omega) d\omega$$

$$= \int_{C_1} \omega^{n+1} T(\omega) \varphi(v, z) d\omega$$
Combining Xemma I and OPE (3),
we obtain commutator (1).
Next, we explain how (4) gives rise to
Virasovo Xie algebra. Xet y be a circle
in the z-plane with parameter
Z = re^{2\pi t-1} \Theta, \quad 0 \le \Theta \le 1.
Take circles C, and C₂ in the w-plane
and suppose $r_s < r < r_1$. Then we have
 $L_m L_n = \left(\frac{1}{2\pi 1^{-1}}\right)^2 \int_{V_s} \int_{C_1} \omega^{m+1} T(\omega) T(z) d\omega dz$

Lu Lun =
$$\left(\frac{1}{2\pi \sqrt{1-1}}\right)^{2} \int \int \omega^{m+1} z^{m+1} T(z) T(\omega) d\omega dz$$

Thus for a circle (as in the above
picture, we get
 $\left[L_{m}, L_{n}\right] = \left(\frac{1}{2\pi \sqrt{1-1}}\right)^{2} \int \left(\int \omega^{m+1} z^{m+1} T(\omega) T(z) d\omega\right) dz$
(ombining with OPE (4) we obtain the
Virasoro Zie algebra.

$$\frac{\text{Definition:}}{\text{For a transformation } f \text{ of the complex}} \\ \text{For a transformation } f \text{ of the complex} \\ \text{plane we introduce the "Schwarzian der."} \\ S(f, z) = \frac{f''(z)}{f'(z)} - \frac{3}{2} \left(\frac{f''(z)}{f'(z)}\right)^2 \\ \end{array}$$

$$\frac{\text{Jemma 2}}{\text{For a Möbius transformation}}$$
For a Möbius transformation
$$f(z) = \frac{az+b}{cz+d}, \quad a,b,c,d \in C, ad-bc=l,$$
the equality $S(f,z) = 0$ holds for any $z \in C$.
Conversely, if $S(f,z) = 0$ for any $z \in C$,
then f is a Möbius transformation

From the OPE of the energy momentum
tensor we get
(*)
$$S_{\varepsilon} T(z) = \varepsilon(z) \frac{\partial}{\partial z} T(z) + 2\varepsilon'(z) T(z) + \frac{c}{1+} \varepsilon''(z)$$

 $\longrightarrow T(z)$ is not a co-variant tensor
of order \perp
For $\varepsilon = z^{n+1}$, $n = -1, 0, 1$, f_{ε} generates a
global Möbius trf. and $\frac{c}{12} \varepsilon'' = 0$.
Integral form of (*):
Proposition 4:
For a hol. transformation $w = f(z)$,
we have
 $T(\varepsilon) = \left(\frac{\partial w}{\partial z}\right)^{2} T(w) + \frac{c}{12} S(f_{1} z)$