Proposition 2:
A nontrivial chiral vertex operator

$$
\Psi(z): H_{\lambda_{0}} \otimes H_{\lambda} \otimes H_{\lambda_{\infty}}^{*} \longrightarrow \mathbb{C}
$$

exists if and only if the highest weights λ_{0}, λ and λ_{∞} satisfy the quantum Clebsch-Gordan condition at level k.
Conformal invariance (Prop. 4 §5)
\longrightarrow restriction $\Psi_{0}: V_{\lambda_{0}} \otimes V_{\lambda} \rightarrow V_{\lambda_{\infty}}$ is given by $z^{\Delta_{\infty}-\Delta_{\lambda_{0}}-\Delta_{\lambda}} \bar{P},(* *)$
where \vec{P} is a basis of

$$
H \operatorname{lom} g\left(K_{\infty} \otimes V_{\lambda}, V_{\lambda_{\infty}}\right)
$$

ψ is uniquely determined by Ψ_{0}. Decompose $\phi(v, z)$ into $\phi(v, z)=\sum_{n \in \mathbb{Z}} \phi_{n}(v, z)$, such that ϕ_{n} sends $H_{\lambda}(d)$ to $H_{\lambda}(d-n)$. By using Prop. 1 and $\left(\begin{array}{ll}x & x\end{array}\right)$ together with the definition of L_{0} one can check the relation

$$
\left[L_{0}, \phi_{0}(v, z)\right]=\left(z \frac{d}{d z}+\Delta_{\lambda}\right) \phi_{0}(v, z)
$$

(exercise)
$\rightarrow \phi(v, z), v \in V_{\lambda}$ can be written in the form

$$
\phi(v, z)=\sum_{n \in \mathbb{Z}} \phi_{n}(v) z^{-n-\Delta}
$$

where $\Delta=-\Delta_{\lambda_{\infty}}+\Delta_{\lambda_{0}}+\Delta_{\lambda}, \phi_{n}(v): H H_{\lambda_{0}}(d) \rightarrow H_{\lambda_{\infty}}(d-n)$
Proposition 3:
The primary field $\phi(v, z), v \in K_{\lambda}$, satisfies the relation

$$
\begin{equation*}
\left[L_{n}, \phi(v, z)\right]=z^{n}\left(z \frac{d}{d z}+(n+1) \Delta_{\lambda}\right) \phi(v, z) \tag{1}
\end{equation*}
$$

for any integer n.
(exercise)
Interpretation:
$\phi(v, z)(d z)^{\Delta_{\lambda}}$ is invariant under local hole. conformal transformations, namely we have

$$
\phi\left(v_{1} f(z)\right)=\left(\frac{d f}{d z}\right)^{-\Delta_{\lambda}} \phi(v, z)
$$

\longrightarrow for $f_{\varepsilon}(z)=z-\varepsilon(z)$ this gives:

$$
\begin{equation*}
\delta_{\varepsilon} \phi(v, z)=\left(\Delta_{\lambda} \varepsilon^{\prime}(z)+\varepsilon(z) \frac{d}{d z}\right) \phi(v, z) \tag{2}
\end{equation*}
$$

In particular, in the case $\varepsilon(z)=\varepsilon z^{n+1}$ the right-hand side of (2) coincides with (1).

Let-hand sides also coincide. Next, define $X(z)$ and $T(z)$ by

$$
\begin{aligned}
& X(z)=\sum_{n \in \mathbb{Z}}\left(X \otimes t^{n}\right) z^{-n-1} \\
& T(z)=\sum_{n \in \mathbb{Z}} L_{n} z^{-n-2}
\end{aligned}
$$

where $X \in$ of and both $X(z)$ and $T(z)$ are formal power series in z. For $u \in H_{\lambda}$,

$$
\eta \in H_{\lambda}^{*},\langle\eta, X(z) u\rangle=\sum_{n \in \mathbb{Z}}\left\langle\eta,\left(X \otimes t^{n}\right) z^{-n-1} u\right\rangle
$$

is expressed as a finite sum, similarly for $T(z)$ ("energy-momentum tensor").
OPE:

$$
X(\omega) \phi(v, z)=\sum_{k \in \mathbb{Z}} \omega^{-1} z^{-\Delta-k} \sum_{m \in \mathbb{Z}}\left(\frac{z}{\omega}\right)^{m}\left(X \otimes t^{m}\right) \phi_{k-m}(v)
$$

A ssume $|\omega|>|z|>0$. Using gauge inv., the above expression can be written as

$$
\sum_{k \in \mathbb{Z}} \omega^{-1} z^{-\Delta-k} \sum_{m \geqslant 0}\left(\frac{z}{\omega}\right)^{m} \phi_{k}(X v)+R_{1}(\omega-z),
$$

where $R_{1}(\omega-z)$ is regular in the sense that $\left.\left\langle\eta, R_{1}(\omega-z)\right\}\right\rangle$ is mol. $\forall\left\{\in H_{x_{0}, \eta} \eta \in H_{x_{\infty}}^{*}\right.$
$\longrightarrow X(\omega) \phi(v, z)$ in region $|\omega|>|z|>0$ is analytically continued to $\phi(v, z) X(\omega)$ defined in region $|z|>|\omega|>0$
"operator product expansion" of $X(\omega)$ and $\phi(v, z)$
Similarly, we have

$$
\begin{aligned}
T(\omega) \phi(v, z)= & \left(\frac{\Delta_{\lambda}}{(\omega-z)^{2}}+\frac{1}{\omega-z} \frac{\partial}{\partial z}\right) \phi(v, z) \\
& +R_{2}(\omega-z)
\end{aligned}
$$

in the region $|\omega|>|z|>0$, where $R_{2}(\omega-z)$ is regular in $w-z \rightarrow$ analytically continued to $\phi(v, z) T(\omega)$ in region $|z|>|\omega|>0$. In the region $|\omega|>|z|>0$ we have:

$$
\begin{aligned}
T(\omega) T(z)= & \frac{c / 2}{(\omega-z)^{4}}+\frac{2 T(z)}{(\omega-z)^{2}}+\frac{1}{\omega-z} \frac{\partial}{\partial z} T(z) \\
& +R_{3}(\omega-z)
\end{aligned}
$$

where $R_{3}(\omega-z)$ is regular in $\omega-z$.
\longrightarrow analytically continued to region $|z|>|\omega|>0: T(z) T(\omega)$

Lemma 1:

$$
\begin{aligned}
& {\left[X \otimes t^{n}, \phi(v, z)\right]=\frac{1}{2 \pi \sqrt{-1}} \int_{C} \omega^{n} X(\omega) \phi(v, z) d \omega,} \\
& {\left[L_{n}, \phi(v, z)\right]=\frac{1}{2 \pi \sqrt{-1}} \int_{C} \omega^{n+1} T(\omega) \phi(v, z) d \omega,}
\end{aligned}
$$

where C is an oriented small circle in the w-plane turning around z counterclockwise.
Proof:
We will show the second equality, the first one is analogous. Fix a point in the w-plane with coordinate. Consider the following contours

and the corresponding residues:

$$
\begin{aligned}
& T(\omega)=\sum_{n \in \mathbb{Z}} L_{n} \omega^{-n-2} \\
\longrightarrow & L_{n} \phi(v, z)=\frac{1}{2 \pi \sqrt{-1}} \int_{C_{1}} \omega^{n+1} T(\omega) \phi(v, z) d \omega \\
& \phi(v, z) L_{n}=\frac{1}{2 \pi \sqrt{-1}} \int_{C_{2}} \omega^{n+1} \phi(v, z) T(\omega) d \omega \\
\Rightarrow & \int_{C_{1}} \omega^{n+1} T(\omega) \phi(v, z) d \omega-\int_{C_{2}} \omega^{n+1} \phi(v, z) T(\omega) d v \\
= & \int_{C} \omega^{n+1} T(\omega) \phi(v, z) d \omega
\end{aligned}
$$

Combining Lemma l and OPE (3), we obtain commutator (1).
Next, we explain how (4) gives rise to Virasoro Lie algebra. Let γ be a circle in the z-plane with parameter $z=r e^{2 \pi \sqrt{-1} \theta}, \quad 0 \leq \theta \leq 1$.
Take circles C_{1} and C_{2} in the w-plane and suppose $r_{2}<r<r_{1}$. Then we have

$$
L_{m} L_{n}=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{2} \int_{\gamma} \int_{C_{1}} \omega^{m+1} z^{n+1} T(\omega) T(z) d \omega d z
$$

$$
L_{n} L_{m}=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{2} \int_{\gamma} \int_{C_{2}} w^{m+1} z^{n+1} T(z) T(\omega) d w d z
$$

Thus for a circle C as in the above picture, we get

$$
\left[L_{m}, L_{n}\right]=\left(\frac{1}{2 \pi \sqrt{-1}}\right)^{2} \int_{\gamma}\left(\int_{C} \omega^{m+1} z^{n+1} T(\omega) T(z) d \omega\right) d z
$$

Combining with OPE (4) we obtain the Virasoro Lie algebra.
Definition:
For a transformation f of the complex plane we introduce the "Schwarzian der."

$$
S(f, z)=\frac{f^{\prime \prime \prime}(z)}{f^{\prime}(z)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\alpha}
$$

Lemma 2:
For a Möbius transformation

$$
f(z)=\frac{a z+b}{c z+d}, a, b, c, d \in \mathbb{C}, a d-b c=1
$$

the equality $S(f, z)=0$ holds for any $z \in \mathbb{C}$. Conversely, if $S(f, z)=0$ for any $z \in \mathbb{C}$, then f is a Moubius transformation

From the OPE of the energy momentum tensor we get
(x) $\quad \delta_{\varepsilon} T(z)=\Sigma(z) \frac{\partial}{\partial z} T(z)+2 \Sigma^{\prime}(z) T(z)+\frac{c}{12} \Sigma^{\prime \prime \prime}(z)$
$\longrightarrow T(z)$ is not a covariant tensor of order L
For $\varepsilon=z^{n+1}, n=-1,0,1, f \varepsilon$ generates a global Möbius terf. and $\frac{c}{12} \varepsilon^{\prime \prime \prime}=0$.
Integral form of (*):
Proposition 4:
For a hob. transformation $\omega=f(z)$, we have

$$
T(z)=\left(\frac{\partial \omega}{\partial z}\right)^{2} T(\omega)+\frac{c}{12} S(f, z)
$$

